Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4.

Identifieur interne : 001563 ( Main/Exploration ); précédent : 001562; suivant : 001564

Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4.

Auteurs : Kristan K. Steffen [États-Unis] ; Vivian L. Mackay ; Emily O. Kerr ; Mitsuhiro Tsuchiya ; Di Hu ; Lindsay A. Fox ; Nick Dang ; Elijah D. Johnston ; Jonathan A. Oakes ; Bie N. Tchao ; Diana N. Pak ; Stanley Fields ; Brian K. Kennedy ; Matt Kaeberlein

Source :

RBID : pubmed:18423200

Descripteurs français

English descriptors

Abstract

In nearly every organism studied, reduced caloric intake extends life span. In yeast, span extension from dietary restriction is thought to be mediated by the highly conserved, nutrient-responsive target of rapamycin (TOR), protein kinase A (PKA), and Sch9 kinases. These kinases coordinately regulate various cellular processes including stress responses, protein turnover, cell growth, and ribosome biogenesis. Here we show that a specific reduction of 60S ribosomal subunit levels slows aging in yeast. Deletion of genes encoding 60S subunit proteins or processing factors or treatment with a small molecule, which all inhibit 60S subunit biogenesis, are each sufficient to significantly increase replicative life span. One mechanism by which reduced 60S subunit levels leads to life span extension is through induction of Gcn4, a nutrient-responsive transcription factor. Genetic epistasis analyses suggest that dietary restriction, reduced 60S subunit abundance, and Gcn4 activation extend yeast life span by similar mechanisms.

DOI: 10.1016/j.cell.2008.02.037
PubMed: 18423200
PubMed Central: PMC2749658


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4.</title>
<author>
<name sortKey="Steffen, Kristan K" sort="Steffen, Kristan K" uniqKey="Steffen K" first="Kristan K" last="Steffen">Kristan K. Steffen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA 98195</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Mackay, Vivian L" sort="Mackay, Vivian L" uniqKey="Mackay V" first="Vivian L" last="Mackay">Vivian L. Mackay</name>
</author>
<author>
<name sortKey="Kerr, Emily O" sort="Kerr, Emily O" uniqKey="Kerr E" first="Emily O" last="Kerr">Emily O. Kerr</name>
</author>
<author>
<name sortKey="Tsuchiya, Mitsuhiro" sort="Tsuchiya, Mitsuhiro" uniqKey="Tsuchiya M" first="Mitsuhiro" last="Tsuchiya">Mitsuhiro Tsuchiya</name>
</author>
<author>
<name sortKey="Hu, Di" sort="Hu, Di" uniqKey="Hu D" first="Di" last="Hu">Di Hu</name>
</author>
<author>
<name sortKey="Fox, Lindsay A" sort="Fox, Lindsay A" uniqKey="Fox L" first="Lindsay A" last="Fox">Lindsay A. Fox</name>
</author>
<author>
<name sortKey="Dang, Nick" sort="Dang, Nick" uniqKey="Dang N" first="Nick" last="Dang">Nick Dang</name>
</author>
<author>
<name sortKey="Johnston, Elijah D" sort="Johnston, Elijah D" uniqKey="Johnston E" first="Elijah D" last="Johnston">Elijah D. Johnston</name>
</author>
<author>
<name sortKey="Oakes, Jonathan A" sort="Oakes, Jonathan A" uniqKey="Oakes J" first="Jonathan A" last="Oakes">Jonathan A. Oakes</name>
</author>
<author>
<name sortKey="Tchao, Bie N" sort="Tchao, Bie N" uniqKey="Tchao B" first="Bie N" last="Tchao">Bie N. Tchao</name>
</author>
<author>
<name sortKey="Pak, Diana N" sort="Pak, Diana N" uniqKey="Pak D" first="Diana N" last="Pak">Diana N. Pak</name>
</author>
<author>
<name sortKey="Fields, Stanley" sort="Fields, Stanley" uniqKey="Fields S" first="Stanley" last="Fields">Stanley Fields</name>
</author>
<author>
<name sortKey="Kennedy, Brian K" sort="Kennedy, Brian K" uniqKey="Kennedy B" first="Brian K" last="Kennedy">Brian K. Kennedy</name>
</author>
<author>
<name sortKey="Kaeberlein, Matt" sort="Kaeberlein, Matt" uniqKey="Kaeberlein M" first="Matt" last="Kaeberlein">Matt Kaeberlein</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18423200</idno>
<idno type="pmid">18423200</idno>
<idno type="doi">10.1016/j.cell.2008.02.037</idno>
<idno type="pmc">PMC2749658</idno>
<idno type="wicri:Area/Main/Corpus">001619</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001619</idno>
<idno type="wicri:Area/Main/Curation">001619</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001619</idno>
<idno type="wicri:Area/Main/Exploration">001619</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4.</title>
<author>
<name sortKey="Steffen, Kristan K" sort="Steffen, Kristan K" uniqKey="Steffen K" first="Kristan K" last="Steffen">Kristan K. Steffen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA 98195</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Mackay, Vivian L" sort="Mackay, Vivian L" uniqKey="Mackay V" first="Vivian L" last="Mackay">Vivian L. Mackay</name>
</author>
<author>
<name sortKey="Kerr, Emily O" sort="Kerr, Emily O" uniqKey="Kerr E" first="Emily O" last="Kerr">Emily O. Kerr</name>
</author>
<author>
<name sortKey="Tsuchiya, Mitsuhiro" sort="Tsuchiya, Mitsuhiro" uniqKey="Tsuchiya M" first="Mitsuhiro" last="Tsuchiya">Mitsuhiro Tsuchiya</name>
</author>
<author>
<name sortKey="Hu, Di" sort="Hu, Di" uniqKey="Hu D" first="Di" last="Hu">Di Hu</name>
</author>
<author>
<name sortKey="Fox, Lindsay A" sort="Fox, Lindsay A" uniqKey="Fox L" first="Lindsay A" last="Fox">Lindsay A. Fox</name>
</author>
<author>
<name sortKey="Dang, Nick" sort="Dang, Nick" uniqKey="Dang N" first="Nick" last="Dang">Nick Dang</name>
</author>
<author>
<name sortKey="Johnston, Elijah D" sort="Johnston, Elijah D" uniqKey="Johnston E" first="Elijah D" last="Johnston">Elijah D. Johnston</name>
</author>
<author>
<name sortKey="Oakes, Jonathan A" sort="Oakes, Jonathan A" uniqKey="Oakes J" first="Jonathan A" last="Oakes">Jonathan A. Oakes</name>
</author>
<author>
<name sortKey="Tchao, Bie N" sort="Tchao, Bie N" uniqKey="Tchao B" first="Bie N" last="Tchao">Bie N. Tchao</name>
</author>
<author>
<name sortKey="Pak, Diana N" sort="Pak, Diana N" uniqKey="Pak D" first="Diana N" last="Pak">Diana N. Pak</name>
</author>
<author>
<name sortKey="Fields, Stanley" sort="Fields, Stanley" uniqKey="Fields S" first="Stanley" last="Fields">Stanley Fields</name>
</author>
<author>
<name sortKey="Kennedy, Brian K" sort="Kennedy, Brian K" uniqKey="Kennedy B" first="Brian K" last="Kennedy">Brian K. Kennedy</name>
</author>
<author>
<name sortKey="Kaeberlein, Matt" sort="Kaeberlein, Matt" uniqKey="Kaeberlein M" first="Matt" last="Kaeberlein">Matt Kaeberlein</name>
</author>
</analytic>
<series>
<title level="j">Cell</title>
<idno type="eISSN">1097-4172</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basic-Leucine Zipper Transcription Factors (MeSH)</term>
<term>DNA-Binding Proteins (physiology)</term>
<term>Gene Deletion (MeSH)</term>
<term>Histone Deacetylases (physiology)</term>
<term>Ribosomal Proteins (physiology)</term>
<term>Ribosome Subunits, Large, Eukaryotic (physiology)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (physiology)</term>
<term>Silent Information Regulator Proteins, Saccharomyces cerevisiae (physiology)</term>
<term>Sirtuin 2 (MeSH)</term>
<term>Sirtuins (physiology)</term>
<term>Transcription Factors (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Délétion de gène (MeSH)</term>
<term>Facteurs de transcription (physiologie)</term>
<term>Facteurs de transcription à motif basique et à glissière à leucines (MeSH)</term>
<term>Grande sous-unité du ribosome des eucaryotes (physiologie)</term>
<term>Histone deacetylases (physiologie)</term>
<term>Protéines SIR de Saccharomyces cerevisiae (physiologie)</term>
<term>Protéines de Saccharomyces cerevisiae (physiologie)</term>
<term>Protéines de liaison à l'ADN (physiologie)</term>
<term>Protéines ribosomiques (physiologie)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Sirtuine-2 (MeSH)</term>
<term>Sirtuines (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Histone Deacetylases</term>
<term>Ribosomal Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Silent Information Regulator Proteins, Saccharomyces cerevisiae</term>
<term>Sirtuins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Basic-Leucine Zipper Transcription Factors</term>
<term>Sirtuin 2</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Grande sous-unité du ribosome des eucaryotes</term>
<term>Histone deacetylases</term>
<term>Protéines SIR de Saccharomyces cerevisiae</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines ribosomiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Sirtuines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ribosome Subunits, Large, Eukaryotic</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Deletion</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Délétion de gène</term>
<term>Facteurs de transcription à motif basique et à glissière à leucines</term>
<term>Sirtuine-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In nearly every organism studied, reduced caloric intake extends life span. In yeast, span extension from dietary restriction is thought to be mediated by the highly conserved, nutrient-responsive target of rapamycin (TOR), protein kinase A (PKA), and Sch9 kinases. These kinases coordinately regulate various cellular processes including stress responses, protein turnover, cell growth, and ribosome biogenesis. Here we show that a specific reduction of 60S ribosomal subunit levels slows aging in yeast. Deletion of genes encoding 60S subunit proteins or processing factors or treatment with a small molecule, which all inhibit 60S subunit biogenesis, are each sufficient to significantly increase replicative life span. One mechanism by which reduced 60S subunit levels leads to life span extension is through induction of Gcn4, a nutrient-responsive transcription factor. Genetic epistasis analyses suggest that dietary restriction, reduced 60S subunit abundance, and Gcn4 activation extend yeast life span by similar mechanisms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18423200</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>04</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1097-4172</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>133</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2008</Year>
<Month>Apr</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Cell</Title>
<ISOAbbreviation>Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4.</ArticleTitle>
<Pagination>
<MedlinePgn>292-302</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cell.2008.02.037</ELocationID>
<Abstract>
<AbstractText>In nearly every organism studied, reduced caloric intake extends life span. In yeast, span extension from dietary restriction is thought to be mediated by the highly conserved, nutrient-responsive target of rapamycin (TOR), protein kinase A (PKA), and Sch9 kinases. These kinases coordinately regulate various cellular processes including stress responses, protein turnover, cell growth, and ribosome biogenesis. Here we show that a specific reduction of 60S ribosomal subunit levels slows aging in yeast. Deletion of genes encoding 60S subunit proteins or processing factors or treatment with a small molecule, which all inhibit 60S subunit biogenesis, are each sufficient to significantly increase replicative life span. One mechanism by which reduced 60S subunit levels leads to life span extension is through induction of Gcn4, a nutrient-responsive transcription factor. Genetic epistasis analyses suggest that dietary restriction, reduced 60S subunit abundance, and Gcn4 activation extend yeast life span by similar mechanisms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Steffen</LastName>
<ForeName>Kristan K</ForeName>
<Initials>KK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>MacKay</LastName>
<ForeName>Vivian L</ForeName>
<Initials>VL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kerr</LastName>
<ForeName>Emily O</ForeName>
<Initials>EO</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsuchiya</LastName>
<ForeName>Mitsuhiro</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Di</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fox</LastName>
<ForeName>Lindsay A</ForeName>
<Initials>LA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dang</LastName>
<ForeName>Nick</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johnston</LastName>
<ForeName>Elijah D</ForeName>
<Initials>ED</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oakes</LastName>
<ForeName>Jonathan A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tchao</LastName>
<ForeName>Bie N</ForeName>
<Initials>BN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pak</LastName>
<ForeName>Diana N</ForeName>
<Initials>DN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fields</LastName>
<ForeName>Stanley</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kennedy</LastName>
<ForeName>Brian K</ForeName>
<Initials>BK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kaeberlein</LastName>
<ForeName>Matt</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P50 AG005136-25</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG025549-03</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 AG005136</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG025549</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 AG013280</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG024287</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell</MedlineTA>
<NlmUniqueID>0413066</NlmUniqueID>
<ISSNLinking>0092-8674</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050976">Basic-Leucine Zipper Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501391">GCN4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012269">Ribosomal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D038281">Silent Information Regulator Proteins, Saccharomyces cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="C087778">SIR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="D056565">Sirtuin 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="D037761">Sirtuins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.98</RegistryNumber>
<NameOfSubstance UI="D006655">Histone Deacetylases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050976" MajorTopicYN="N">Basic-Leucine Zipper Transcription Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006655" MajorTopicYN="N">Histone Deacetylases</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012269" MajorTopicYN="N">Ribosomal Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054683" MajorTopicYN="N">Ribosome Subunits, Large, Eukaryotic</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038281" MajorTopicYN="N">Silent Information Regulator Proteins, Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056565" MajorTopicYN="N">Sirtuin 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037761" MajorTopicYN="N">Sirtuins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>12</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>02</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18423200</ArticleId>
<ArticleId IdType="pii">S0092-8674(08)00288-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.cell.2008.02.037</ArticleId>
<ArticleId IdType="pmc">PMC2749658</ArticleId>
<ArticleId IdType="mid">NIHMS47706</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2004 Sep;2(9):E296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Apr;183(7):2331-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 13;292(5515):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jul;21(13):4347-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Sep;8(3):505-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11583614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Mar 5;12(5):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18334-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 18;418(6895):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):699-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 6;278(23):20457-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2003 Apr;2(2):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12882320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Aug;49(4):859-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Sep 5;301(5638):1387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 11;426(6967):620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Oct 11;167(1):27-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15479734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1985 Jun;5(6):1512-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3897837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol. 1988 Mar;43(2):B40-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3346517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1988 Jun;2(6):664-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3047007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Jun;11(6):3203-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2038326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1998 May 15;55(10):1541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9633989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Dec 4;273(49):32870-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9830035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Apr;3(4):447-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10230397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 6;285(5429):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Oct 1;13(19):2570-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1959 Jun 20;183(4677):1751-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13666896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2005 Apr;126(4):491-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Jul 1;19(13):1544-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2005 Sep;126(9):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15885745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:407-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Apr;20(8):2706-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10733573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 22;289(5487):2126-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11000115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2000 Aug 9;3(2):83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11015603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2000 Nov;14(14):2135-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11024000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2005 Aug;48(2):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16012843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Nov;9(5):605-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16256736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jan 15;20(2):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 May;26(10):3718-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 May 8;173(3):349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16651379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2006 May;61(5):444-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16720740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 2;312(5778):1312; author reply 1312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16741098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Feb;6(1):95-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Feb;6(1):111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Feb 22;445(7130):922-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2007 Apr;42(4):275-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17174052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Apr 6;3(4):e56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17411345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2007 Jul;6(1):1-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17618850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Aug;6(4):525-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17521386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Sep;27(17):5968-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17548477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Nov 2;131(3):557-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Dec;6(6):731-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17941970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Jan 16;557(1-3):136-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14741356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2004 Apr;6(4):577-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15068796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2004 May;3(5):478-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14766929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 May 25;14(10):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15186745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jul;24(14):6476-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15226447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Aug;131(16):3897-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15253933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Aug;2(8):E246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Dang, Nick" sort="Dang, Nick" uniqKey="Dang N" first="Nick" last="Dang">Nick Dang</name>
<name sortKey="Fields, Stanley" sort="Fields, Stanley" uniqKey="Fields S" first="Stanley" last="Fields">Stanley Fields</name>
<name sortKey="Fox, Lindsay A" sort="Fox, Lindsay A" uniqKey="Fox L" first="Lindsay A" last="Fox">Lindsay A. Fox</name>
<name sortKey="Hu, Di" sort="Hu, Di" uniqKey="Hu D" first="Di" last="Hu">Di Hu</name>
<name sortKey="Johnston, Elijah D" sort="Johnston, Elijah D" uniqKey="Johnston E" first="Elijah D" last="Johnston">Elijah D. Johnston</name>
<name sortKey="Kaeberlein, Matt" sort="Kaeberlein, Matt" uniqKey="Kaeberlein M" first="Matt" last="Kaeberlein">Matt Kaeberlein</name>
<name sortKey="Kennedy, Brian K" sort="Kennedy, Brian K" uniqKey="Kennedy B" first="Brian K" last="Kennedy">Brian K. Kennedy</name>
<name sortKey="Kerr, Emily O" sort="Kerr, Emily O" uniqKey="Kerr E" first="Emily O" last="Kerr">Emily O. Kerr</name>
<name sortKey="Mackay, Vivian L" sort="Mackay, Vivian L" uniqKey="Mackay V" first="Vivian L" last="Mackay">Vivian L. Mackay</name>
<name sortKey="Oakes, Jonathan A" sort="Oakes, Jonathan A" uniqKey="Oakes J" first="Jonathan A" last="Oakes">Jonathan A. Oakes</name>
<name sortKey="Pak, Diana N" sort="Pak, Diana N" uniqKey="Pak D" first="Diana N" last="Pak">Diana N. Pak</name>
<name sortKey="Tchao, Bie N" sort="Tchao, Bie N" uniqKey="Tchao B" first="Bie N" last="Tchao">Bie N. Tchao</name>
<name sortKey="Tsuchiya, Mitsuhiro" sort="Tsuchiya, Mitsuhiro" uniqKey="Tsuchiya M" first="Mitsuhiro" last="Tsuchiya">Mitsuhiro Tsuchiya</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Steffen, Kristan K" sort="Steffen, Kristan K" uniqKey="Steffen K" first="Kristan K" last="Steffen">Kristan K. Steffen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001563 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001563 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18423200
   |texte=   Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18423200" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020